1,777 research outputs found

    Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery

    Full text link
    Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades

    Elevation of serum sphingosine-1-phosphate attenuates impaired cardiac function in experimental sepsis

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.This study was supported by the Federal Ministry of Education and Research (BMBF, Germany, FKZ 01EO1502). This work was supported, in part, by the William Harvey Research Foundation and forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit that is supported and funded by the National Institute of Health Research. This work also contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences supported by the Barts and The London Charity (Award 753/1722). JP was supported by the German Research Foundation SFB 1039. AH was supported by the Swiss National Science Foundation

    Auditory deep sleep stimulation in older adults at home: a randomized crossover trial

    Full text link
    Background Auditory stimulation has emerged as a promising tool to enhance non-invasively sleep slow waves, deep sleep brain oscillations that are tightly linked to sleep restoration and are diminished with age. While auditory stimulation showed a beneficial effect in lab-based studies, it remains unclear whether this stimulation approach could translate to real-life settings. Methods We present a fully remote, randomized, cross-over trial in healthy adults aged 62-78 years (clinicaltrials.gov: NCT03420677). We assessed slow wave activity as the primary outcome and sleep architecture and daily functions, e.g., vigilance and mood as secondary outcomes, after a two-week mobile auditory slow wave stimulation period and a two-week Sham period, interleaved with a two-week washout period. Participants were randomized in terms of which intervention condition will take place first using a blocked design to guarantee balance. Participants and experimenters performing the assessments were blinded to the condition. Results Out of 33 enrolled and screened participants, we report data of 16 participants that received identical intervention. We demonstrate a robust and significant enhancement of slow wave activity on the group-level based on two different auditory stimulation approaches with minor effects on sleep architecture and daily functions. We further highlight the existence of pronounced inter- and intra-individual differences in the slow wave response to auditory stimulation and establish predictions thereof. Conclusions While slow wave enhancement in healthy older adults is possible in fully remote settings, pronounced inter-individual differences in the response to auditory stimulation exist. Novel personalization solutions are needed to address these differences and our findings will guide future designs to effectively deliver auditory sleep stimulations using wearable technology

    Targeting Sphingosine Kinase 1 in Carcinoma Cells Decreases Proliferation and Survival by Compromising PKC Activity and Cytokinesis

    Get PDF
    Sphingosine kinases (SK) catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P), thereby promoting oncogenic processes. Breast (MDA-MB-231), lung (NCI-H358), and colon (HCT 116) carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC) and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy

    The health of Swiss adolescents and its implications for training of health professionals in Switzerland

    Get PDF
    Swiss adolescents generally enjoy satisfying life conditions. Nonetheless, violence, suicide and mental health are the main concerns together with injuries, chronic conditions and eating disorders. Adolescents still face barriers to access the care they need. Adequate training can improve practitioners' skills when dealing with adolescents. The last two decades have seen the development of innovative adolescent health units and networks in various regions of Switzerland as well as research and public health programmes. Training programmes in adolescent health (continuous medical education, post-graduate or pre-graduate) for physicians and nurses are developing but still patchy in Switzerland. Adolescent health is not a sub-specialty as such. Efforts have to be made in order to link with professional associations and institutions to implement adolescent health curricula more efficiently

    Effects of auditory sleep modulation approaches on brain oscillatory and cardiovascular dynamics

    Full text link
    Slow waves, the hallmark feature of deep nonrapid eye movement sleep, do potentially drive restorative effects of sleep on brain and body functions. Sleep modulation techniques to elucidate the functional role of slow waves thus have gained large interest. Auditory slow wave stimulation is a promising tool; however, directly comparing auditory stimulation approaches within a night and analyzing induced dynamic brain and cardiovascular effects are yet missing. Here, we tested various auditory stimulation approaches in a windowed, 10 s ON (stimulations) followed by 10 s OFF (no stimulations), within-night stimulation design and compared them to a SHAM control condition. We report the results of three studies and a total of 51 included nights and found a large and global increase in slow-wave activity (SWA) in the stimulation window compared to SHAM. Furthermore, slow-wave dynamics were most pronouncedly increased at the start of the stimulation and declined across the stimulation window. Beyond the changes in brain oscillations, we observed, for some conditions, a significant increase in the mean interval between two heartbeats within a stimulation window, indicating a slowing of the heart rate, and increased heart rate variability derived parasympathetic activity. Those cardiovascular changes were positively correlated with the change in SWA, and thus, our findings provide insight into the potential of auditory slow wave enhancement to modulate cardiovascular restorative conditions during sleep. However, future studies need to investigate whether the potentially increased restorative capacity through slow-wave enhancements translates into a more rested cardiovascular system on a subsequent day

    Leistung und Stresslevel bei Maultieren während eines fünftägigen Gotthardtrecks

    Get PDF
    Während einer fünftägigen Gotthardüberquerung im Sommer 2016 haben drei Maultiere als Tragtiere mit einer Gepäcklast von je 80 kg rund 94,46 Kilometer und 3’364 Höhenmeter bewältigt. Die Leistungsanforderung wurde anhand der Erholungswerte der Vitalparameter Herzfrequenz, Atemfrequenz und Körpertemperatur, sowie durch kontinuierliche Herzfrequenzmessung während der Belastung evaluiert. Die Bestimmung der Glucokortikoid- Metabolit Konzentration im Kot diente zur Einschätzung des Stresslevels der drei Maultiere. Die Erholungswerte der Herzfrequenzen der drei Maultiere lagen während allen Trekkingetappen in einem Bereich, der nicht auf eine Leistungsüberforderung schliessen liess. Anhand der kontinuierlichen Herzfrequenzaufzeichnung bei einem der Maultiere konnte gezeigt werden, dass die physische Leistungsanforderung im Ausdauerbereich lag. Wie als normale physiologische Reaktion des Körpers nach einer fünftägigen körperlichen Belastung erwartet, stieg Stresslevel gemessen an den Glucokortikoid-Metaboliten im Kot gegen Ende des Trecks bei allen Maultieren an. In der vorliegenden Studie konnte gezeigt werden, dass die Maultiere während des Gotthardtrecks ausdauernd belastbar waren, ohne durch die Anstrengung beeinträchtigt zu sein, die schon historisch von Maultieren abverlangt wurde

    Fluorescent Cascade and Direct Assays for Characterization of RAF Signaling Pathway Inhibitors

    Get PDF
    RAF kinases are part of a conserved signaling pathway that impacts cell growth, differentiation, and survival, and RAF pathway dysregulation is an attractive target for therapeutic intervention. We describe two homogeneous fluorescent formats that distinguish RAF pathway inhibitors from direct RAF kinase inhibitors, using B-RAF, B-RAF V599E, and C-RAF. A Förster-resonance energy transfer (FRET) based method was used to develop RAF and MEK cascade assays as well as a direct ERK kinase assay. This method uses a peptide substrate, that is terminally labeled with a FRET-pair of fluorophores, and that is more sensitive to proteolysis relative to the phosphorylated peptide. A second time-resolved FRET-based assay using fluorescently labeled MEK substrate was used to detect direct inhibitors of RAF kinase activity. The cascade assays detect compounds that interact with activated and unactivated kinases within the recapitulated RAF pathway, and the direct assays isolate the point of action for an inhibitor

    Subcellular distribution of FTY720 and FTY720-phosphate in immune cells - another aspect of Fingolimod action relevant for therapeutic application

    Get PDF
    FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates
    • …
    corecore